WORKSHEET 1

Numbers

I. Choose the correct option.

1. 10 crore $=$ \qquad million
(a) 1
(b) 10
(c) 100
(d) 1,000
2. 30 lakh $=$ \qquad million
(a) 1
(b) 3
(c) 10
(d) 30
3. The predecessor of $45,321,620$ is \qquad .
(a) $45,321,619$
(b) $45,321,621$
(c) $45,322,620$
(d) $45,322,619$
4. The largest 8 -digit number that can be formed using the digits $9,0,8,7,4,3,2,5$ is:
(a) $8,97,54,320$
(b) $9,78,54,320$
(c) $9,87,54,230$
(d) $9,87,54,320$
5. The number $8,25,657$ rounded off to the nearest 1,000 is \qquad .
(a) $8,26,000$
(b) $8,25,000$
(c) $8,25,600$
(d) $8,26,700$

II. Fill in the blanks.

1. 7 lakh $=$ \qquad thousands
2. The smallest 9 -digit number is \qquad .
3. The number name for $88,88,088$ is \qquad .
4. The successor of $9,99,999$ is \qquad .

III. Do as directed.

1. By putting commas at appropriate places, write the number names for the following numbers both in Indian and International number system.
(a) 32758604
(b) 6048102
(c) 92865543
(d) 800506241
2. Find the sum and difference between the place values of the underlined digits in the given numbers.
(a) $64,72, \underline{8} 45$
(b) $9,0 \underline{8}, 5 \underline{3}, 746$
(c) $\underline{87}, 92, \underline{3} 1,685$
3. Write the following numbers in expanded form.
(a) $48,27,163$
(b) $7,10,85,967$
(c) $21,00,74,368$
4. Write the numeral for the following.
(a) One less than one million
(b) Ten more than hundred thousand
(c) Smallest 7-digit number having 4 different digits
(d) Smallest 8-digit number having 2 at the thousands place
5. Arrange the following numbers in ascending order.
(a) $14,62,845 ; 14,26,845 ; 14,62,485 ; 14,26,548$
(b) $6,08,25,143 ; 6,80,25,143 ; 6,80,52,134 ; 6,08,52,413$
6. Arrange the following numbers in descending order.
(a) $71,80,629 ; 71,08,629 ; 17,80,926 ; 72,80,269$
(b) $9,25,34,687 ; 9,52,34,687 ; 9,52,43,786 ; 9,25,43,678$
7. Put the correct sign $>,<$ or $=$.
(a) $62,47,183$ \qquad 62,74,183
(b) $1,50,21,123$ \qquad 1,50,12,123
(c) $8,04,93,629$ \qquad 80,493,629
(d) $73,64,52,490$ \qquad 73,64,52,940
8. Round off the given numbers to the nearest 100 and 1,000 .

	Number	Nearest $\mathbf{1 0 0}$	Nearest $\mathbf{1 , 0 0 0}$
(a)	$7,54,256$		
(b)	$1,81,792$		
(c)	$29,47,62,183$		
(d)	$91,15,36,814$		

9. Using the digits $3,8,2,9,0,4$ and 7 only once, form the largest and the smallest possible number of 7-digits.
10. What is the largest 8 -digit number? If we add 1 to it, what will it become?

WORKSHEET 2

Four Operations

I. Choose the correct option.

1. $(71,04,132+9,51,347)+11,00,285=71,04,132+(9,51,347+11,00,285)$

This property of addition is called \qquad .
(a) order commutative property
(b) grouping associative property
(c) zero identity property
(d) none of these
2. \quad Minuend $=$ Difference \qquad Subtrahend
(a) +
(b) -
(c) \times
(d) \div
3. $19,276 \times 1=19,276$

This property of multiplication is called \qquad .
(a) distributive property
(b) commutative property
(c) zero property
(d) identity property
4. A number cannot be divided by \qquad .
(a) itself
(b) 1
(c) 0
(d) 2
5. $93,87,046 \div 100$ gives \qquad as remainder.
(a) 6
(b) 4
(c) 40
(d) 46
II. Fill in the blanks.

1. $55,68,174+0=$ \qquad
The property used is called \qquad .
2. $98,46,793-90,04,000=$ \qquad
3. $9,215 \times(647+330)=($ \qquad $\times 647)+(9,215 \times$ \qquad)
This property of multiplication is called \qquad .
4. $21,376 \times 200=$ \qquad
5. $0 \div 3,75,46,920=$ \qquad

III. Match the following.

Column I

(a) $15 \div 3+2 \times 5$
(b) $26 \times 12 \div 4-16 \div 8$
(c) $(81 \div 3) \div 3 \div 3 \div 3$
(d) $6+4-7+12 \div 6$
(e) $3 \times 2 \times 24 \div 6+20-7$

Column II

(i) 1
(ii) 37
(iii) 76
(iv) 15
(v) 5

IV. Do as directed.

1. Find the following sum.
(a) $46,305+31,490$
(b) $8,12,921+6,15,384$
(c) $15,31,20,743+96,87,320+20,16,477$
(d) $3,45,21,650+82,37,900+49,36,786$
2. Subtract and check your answer.
(a) 93,876 from $8,05,346$
(b) 2,79,989 from $15,08,917$
3. Find the following products.
(a) $3,45,167 \times 248$
(b) $12,23,920 \times 574$
(c) $89,264 \times 315$
(d) $4,915 \times 273 \times 608$
4. Divide and check your answer.
(a) $76,948 \div 32$
(b) $4,20,534 \div 127$
(c) $92,18,46,216 \div 325$
5. Solve the following word problems.
(a) A factory manufactured $1,75,820$ red pens; 96,450 blue pens and $1,45,615$ black pens. How many pens were manufactured in all at the factory?
(b) The population of city A is $2,56,410$, the population of city B is 3 times that of city A and the population of city C is half the population of city B . What is the population of cities B and C ? Which city is most populated?
(c) The product of two numbers is $4,51,92,966$. If one of the numbers is 3,549 , find the other number.
(d) An education trust wanted to open a school. They had ₹ $79,86,54,960$ to invest. They purchased 5 school vans for ₹ $2,00,500$ each, spent ₹ $8,00,00,000$ on building and infrastructure. The trust decided to pay each teacher ₹ $4,50,000$ per year and appointed 12 teachers. How much money is still left with the trust at the end of the year?

WORKSHEET 3

Factors and Multiples

I. Choose the correct option.

1. The smallest multiple of a number is \qquad .
(a) 0
(b) 1
(c) number itself
(d) any number
2. 54 is divisible by:
(a) 2
(b) 3
(c) 6
(d) all of these
3. A number which has only 2 factors, 1 and itself is called a/an \qquad .
(a) prime number
(b) composite number
(c) natural number
(d) odd number
4. The smallest factor of every number is \qquad .
(a) 0
(b) 1
(c) 2
(d) number itself
5. The HCF of a pair of co-prime numbers is always \qquad .
(a) 1
(b) 0
(c) any number
(d) none of these
II. Fill in the blanks.
6. Every number is a multiple of \qquad .
7. A number can have only \qquad number of factors.
8. The smallest prime number is \qquad .
9. \qquad and \qquad are neither prime nor composite.
10. \qquad means to break a number into its factors.
11. The LCM of co-prime numbers is the \qquad of those numbers.
III. Write ' T ' for True or ' F ' for False.
12. A number is divisible by 9 if the sum of its digits is divisible by 3 .
13. 68,795 is divisible by 2 .
14. The smallest even prime number is 2 .
15. The LCM of 4,8 and 12 is 24 .
16. Odd numbers are always divisible by 3 .
17. HCF of 2 and 3 is 1 .

IV. Do as directed.

1. Check the divisibility of following numbers by $2,3,4,5,6,8,9,10$ and 11 . Put ' \checkmark ' if divisible and ' x ' if not divisible.
(a)
(b)

	Divisible by															
Number	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$							
$89,76,87,340$																
$5,70,240$																

2. Make a factor tree for the following numbers.
(a) 36
(b) 248
(c) 120
(b) 225
3. Find the HCF and LCM of the following numbers using prime factorization.
(a) 45, 80 and 105
(b) 64, 120 and 200
4. Find the HCF and LCM of the following numbers using division method.
(a) 60, 90 and 120
(b) 27, 243 and 729
5. Solve the following problems.
(a) The LCM of two numbers is 45 and their HCF is 3 . If one of the numbers is 9 , find the other number.
(b) The HCF of 36 and 150 is 6 . Find their LCM.
(c) Two lighthouses flash their lights every 30 seconds and 40 seconds respectively. Given that they flashed together at 8.30 p.m., when will they next flash the lights together?
(d) Three strings of length $72 \mathrm{~cm}, 144 \mathrm{~cm}$ and 216 cm are to be cut into equal lengths. What is the greatest possible length of each piece?
(e) The LCM of two numbers is 96 and their HCF is 16 . If one of the numbers is 32 , find the other number.
